
Abstract :

Parkinsonism is one of the most common Neurologic disorders affecting approximately 1% population above the

age of 60 years. This review article provides an effective summary of Brain functional imaging in the evaluation of

Parkinson's Disease.(PD) These imaging modalities include functional MRI, FDG Brain PET scans, and DAT

(Dopamine Transporter scans). These help in evaluations of neurotransmitter changes noted in the disease. Each

modality provides a specific and unique aspect in being able to identify Parkinson's disease. Parkinson Disease

Cognitive Patterns (PDCP) and Parkinson's disease related Patterns(PDRP) are further analyzed to evaluate

intraparenchymal structures. The Imaging review also helps to better understand the neurotransmitter activity, and

the resting symptoms of Parkinson's as well as motor dyskinesias assosciated with levodopa.

Background:

Functional Magnetic Resonance Imaging (fMRI)

Over the years, fMRI has developed a significant role in

being able to describe the functions of brain structures;

especially in the context of PD. Hemoglobin carrying

oxygen has a different magnetic resonance when

compared to deoxygenated hemoglobin in a magnetic

field. Via a hemodynamic response, the blood releases

oxygen to the active neurons at a greater rate as

compared to the inactive neurons. This results in a

difference in magnetic susceptibility between

oxygenated hemoglobin and deoxygenated

hemoglobin, resulting in a magnetic signal variation

which can be detected by an MRI. This difference in

magnetic susceptibility based on oxygen level is referred

to as BOLD (Blood Oxygenation Level-Dependent)

contrast. Areas in the brain with increased metabolic

demands are thought to reflect areas with higher

neuronal activity, thereby requiring a greater blood flow

which results in a decrease in deoxyhemoglobin and an

increase in BOLD signal. fMRI is practical for

neuroimaging because it has a high spatial and temporal

resolution; thereby making it ideal for establishing

changes and patterns in neuronal activity. However,

fMRI has a poor signal-to-noise ratio in comparison to

radiotracer imaging. The BOLD signal can at times

consist of spontaneous fluctuations which reflect
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functional brain connectivity in certain areas of the

brain. These spontaneous fluctuations can be measured

by the resting-state fMRI. BOLD signals from a

particular region of interest or seed are used to calculate

correlations with other brain voxels, providing a more

precise look at detailed connectivity in the brain.

Because of the limitations of single-seed based analysis,

other approaches such as creating a correlation matrix

via multiple seeds also known as hierarchical clustering,

or independent component analysis (ICA), have been

used to examine different brain regions and their

corresponding functional connectivity. As observed in

figure 1, single seed functional images demonstrating

regions with increased connectivity with the striatal seed

in PD patients. Other fMRI methods, such as regional

homogeneity, can only measure local activity rather

than connectivity. As of recent literature, limited

resting-state studies have been used in the diagnosis of

PD.

PET and SPECT imaging utilize radiotracers for

assessment of brain function, and have been used to

study the dopaminergic neuronal system. Furthermore,

radiotracer imaging can also visualize cerebral blood

flow and glucose utilization via radio-labeled fluids. In

comparison to PET, SPECT is readily available and less

expensive. However, SPECT lacks the higher sensitivity

and superior spatial resolution observed in PET. SPECT

spatial resolution restricts the separation of the

stratum's caudate and putamen in reference to its use in
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PD. In PET, the higher sensitivity allows for production

of shorter imaging times with less motion artifacts.

PET also employs radiotracers with a shorter half-life,

making it possible to perform multiple same day

studies.

In terms of the practical application of PET/SPECT to

PD, the dopaminergic imaging can be used to assess the

severity of the disease. The mechanism of radiotracer

function is related to the pathways of the dopamine

production, release, and uptake. Radiotracers can be

used to assess pre- or post- synaptic dopaminergic

function, using radioligand imaging of the

dopaminergic neurons to study PD. As a result the

severity of the disease and the characteristic motor

symptoms of PD are shown to have a functional

correlation to the pathology seen at the dopaminergic

neurons in the substantia nigra. Although applications

have been limited in PD, radioligand imaging can

possibly visualize pathology in neurodegenerative

disorders. For an example, PD is associated with Lewy

bodies, and can be visualized using a- synuclein ligands
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such as 2- (1- [6 - [(2 -[ F] fluoroethyl) (methyl) amino]

- 2 - naphthyl] ethylidene) malononitrile (FDDNP),

or [ F] -BF22. However, the radiotracer ligands are

not specific to -synuclein, and can also bind to - amyloid.

The dual binding of the ligands, requires separate

imaging and image subtraction with ligands specific for -

amyloid, such as [ C] benzothiazole-aniline (Pittsburgh

Compound B, PIB).

[ F]-fluorodeoxyglucose (FDG) PET can be used for

imaging cerebral glucose metabolism, reflecting

synaptic activity. In PD, cerebral perfusion and cerebral

metabolism play an important part, allowing for this

linked association to be used in PET and SPECT

imaging as well (e.g., [ O]-water PET or [ mTc]-

technetium-ethylene cysteinate dimer SPECT).

Figure 2: Retention and regional distribution of [ C]

benzothiazole-aniline (Pittsburgh Compound B, PIB) as

seen on PET images of patients with Alzheimer's

disease (top right), Parkinson's disease (lower left),

Parkinson's disease with dementia (lower middle), and

dementia with Lewy bodies (lower right). DVR =

distribution volume ratio.

FDG PET scans are used to identify changes in cerebral

glucose metabolism during disease states. Thus, spatial

covariance analysis can identify network-level

functional abnormalities in CNS disorders, such as

PD. In this method, a scaled subprofile model (SSM), a

double-centered log-normalized principal component

analysis, is applied to multivoxel metabolic imaging data

from healthy patients in order to determine a pattern.

The data is then compared to resting-state FDG PET

scans from PD patients, and is used to establish an
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Figure 2 : Radiotracer imaging

Parkinson Disease-Related Pattern (PDRP) and

FDG PET
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Figure 1 : Functional Magnetic Resonance

Imaging
(8)

(Figure 1 shows the single seed functional images

demonstrating regions with increased connectivity with

the striatal seed in PD patients. dmThal, dorsomedial

thalamus; ACC, anterior cingulate cortex; VMPFC,

ventromedial prefrontal cortex; IFG, inferior frontal

gyrus; RG, rectal gyrus; MTG, middle temporal gyrus.)
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abnormal disease-related spatial covariance pattern

involving elements of the corticostriatopallid

othalamocortical (CSPTC) circuitry. By using the

covariance and an established pattern, a specific

Parkinson's diease-related pattern (PDRP) is

quantifiable. The PDRP is characterized by increased

pallido-thalamic and pontine metabolic activity, and

reduced activity in premotor cortex, supplemental

motor area, and parietal association regions. Patients

with elevated PDRP patterns correlate mainly with

bradykinesia and rigidity, rather than tremors. This

data can be used to suggest that the abnormally

functioning PDRP may be related to the degeneration

of nigrostriatal dopaminergic pathways. Thus, PDRP

expression can be used to distinguish between PD and

atypical parkinsonian syndromes. PDRP can be

measured in imaging modalities of resting cerebral

perfusion obtained with [ O]H2O PET, mTc-

ethylcysteinate dimer (ECD) SPECT or with arterial spin

labeling MRI methods.

Left: Parkinson's disease motor related spatial

covariance pattern. Right: Parkinson's disease

cognition related spatial covariance pattern. Relative

increases in metabolic activity are shown in red,

whereas relative decreases are shown in blue.

The primary and most well established current
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Figure 3 : Parkinson Disease-Related Pattern

(PDRP) and FDG PET (metabolic

networks and the PD related Motor

Patterns)

Motor Complications of Therapy – Dyskinesias

(17)

treatment for PD is with levodopa. However, prolonged

treatment with levodopa leads to increased brain

sensitivity in the dopaminergic pathways leading to

both motor and nonmotor complications in the majority

of patients. The prevalence of levodopa-induced

dyskinesia (LID) is up to 90% in patients receiving

treatment for nine years or more.

As with other components of PD pathophysiology, we

understand the main pathway that leads to the

manifestations of LID. The major pathophysiology

seems to be related to the over activity of the direct

striatal pathway. The development of LID is known

to be related to both duration and intensity of levodopa

dosing. Studies have shown that a pulsatile dosing of

levodopa with high intensity drug pulses increases risk

of LID developing in both animal models and PD

patients. The LID that develops in these cases is

then also resistant to recovery even after prolonged

cessation of levodopa dosing.

With FDOPA imaging, the relation of LID to levodopa

dosing has been used to study the development of

dyskinesias. A reduced presynaptic FDOPA uptake is

associated with increased dyskinesia severity.

Another marker related to LID pathophysiology is

alteration in the postsynaptic dopamine D2 receptor

availability as measured with [ C]-raclopride PET

imaging. More importantly, the production of

dyskinesias through treatment was studied in a

longitudinal fashion which revealed that the use of

dopaminergic agonists such as ropinirole produced a

smaller reduction in putaminal FDOPA, a marker for

disease severity. Consequently, these patients were less

likely to develop LID. It has been shown that patients

treated with low-dose levodopa and high-dose levodopa

both have an equivalent reduction in striatal DAT

binding, which suggests the presence of other

implicating factors. This may be due to high dopamine

metabolism and turnover rates. During early disease,

the turnover rate is high, and this is even more

pronounced in patients presenting at younger ages. In

these cases, the rate of turnover was estimated by

kinetic modeling of FDOPA time-activity curves (TACs)

that were used with prolonged scan times. Due to

high rates of turnover in younger patient and during

early disease, these populations have greater

susceptibility to motor complications related to
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increased fluctuation of neurohormone levels in

relevant PD pathways. Another factor involved in

severity of LID is the level of dopamine found in the

synapse as determined by [ C]-raclopride PET.

Furthermore, a multitracer study of VMAT and DAT

binding revealed relative down-regulation of dopamine

reuptake compared to nerve terminal loss. It is

noteworthy that early PD is also often seen to have

decreased dopamine reuptake in relation to neuron

loss. This adaptation allows an increase in dopamine

availability to off-set the reduction of dopaminergic

neurons. However, this can also be maladaptive as it

results in oscillatory synaptic dopamine and

concomitant motor complications as the disease

progresses. Though animal studies have shown an

additional upregulation of D1 receptors in response to

levodopa treatment ; which would be consistent with

aberrant response to dopamine levels related to

treatment and dyskinesia development, no such

upregulatory response has been shown in human

patients with PD.

Functional imaging with FDG PET show abnormalities

in cortical metabolism which are related to

manifestation of multiple abnormalities including motor

and cognitive dysfunctions. Using these studies to

compare healthy controls and patients with varying

levels of cognitive defect in PD, one can observe that

there is hypometabolism seen in the frontal and

occipital cortices of PD patients without gross cognitive

defects. Additional areas of hypometabolism in the

frontal, occipital and lateral parietal cortices are also

seen in PD patients with mild cognitive impairment

(MCI). Analysis of the spread of hypometabolism

suggests that the topography of malfunction reflects the

degree of cognitive impairment in these patients.

Applying a spatial covariance analysis to the FDG PET

data revealed a specific pattern of cognitive-defect-

related-brain-hypometabolism in PD patients. This

pattern is characterized by hypometabolism in frontal

and parietal areas with hypermetabolism in the

cerebellar vermis and dentate nucleus. Such a pattern is

described as PD-related cognitive pattern (PDCP) and is

distinct from the expression of PDRP even though both

are progressive over time and expression levels are
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Functional Imaging of Nonmotor Symptoms

Resting Metabolism

predictive of disease severity. That being said, these

patterns are independent with PDCP expression

related simply with cognitive decline whereas PDRP

expression is related to striatal pathway functioning.

Another differentiating feature between the PDCP and

PDRP is their changes in response to PD treatment with

levodopa or Deep Brain Stimulation (DBS). Unlike

PDRP, the PDCP is more resistant to change with

levodopa treatment. As expected without improvement

in PDCP there is little change in cognitive function in

response to levodopa treatment. In patients where

some improvement in cognitive function is seen, there

is also decreased expression of PDCP maintaining the

correlation between clinical observation and functional

imaging results. The same study observed variable

changes in PDCP expression related to cognitive

changes with treatment in PD patients without

dementia. However, the inclusion of treatment in the

study further demonstrated the independent changes in

PDCP and PDRP expression with levodopa treatment.

Though PDRP was more likely to change with

therapy, cognitive changes and PDCP expression

modulation was different in patients who were

determined to be responders and non-responders in

regards to their baseline verbal learning, used as a

measure of cognitive ability. Patients were found to be

more likely to respond cognitively to treatment and

improve verbal learning performance with levodopa if

they initially had higher PDCP expression. In contrast,

patients who had low PDCP baseline expression could

actually be seen to worsen with treatment with

levodopa.

The beneficial and detrimental effects of PD treatment

may be related to dopaminergic variation throughout

the striatum, which, in the individual, is based on

disease severity, treatment and individual genetics.

Using DBS, a series of studies revealed that GPi and

STN stimulation were associated with improved motor

learning, whereas levodopa was not. However, as

mentioned above, the improvement was once again

dependent on baseline performance where patients

who benefited had poor baseline performance. This

effect was associated with suppression of normal

deactivation seen in ventromedial prefrontal cortex

(vmPFC) during motor learning sequence. Patients who

were abnormal learners had the activity of vmPFC

depressed by levodopa therapy to cause improvement
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in learning status. However, good learners who had

normal vmPFC activity initially, suffered an abnormal

suppression of activity related to worsening learning

performance. In addition to use of FDG PET, additional

studies with use of fMRI or [15O]H2O PET have also

found similar results.

Dopaminergic dysfunction in the striatum of PD

patients may be related to the development of cognitive

defects. Specifically looking at dopaminergic function

of the caudate reveals that reduced activity in this area is

related to cognitive defects in PD patients. Additionally,

there is a normal correlation between caudate

dopaminergic activity and learning-related activation in

dorsolateral and ventral prefrontal cortices that is seen

in healthy controls but lost in PD patients.

Interestingly, this relation of cognitive function, which is

functionally related to PDCP expression, is correlated to

caudate activity but not with DAT binding in the

putamen.

In vivo imaging studies of cholinergic defects can be

conducted with the use of tracers targeting the

components of cholinergic neurons such as

acetylcholinesterase (AChE), cholinergic receptors

(nAChR and mAChR) and vesicular transporter

(VAChT). Both [ C]-methyl-4-piperidinly proprionate

(PMP) and [ C]-methyl-4-piperidyl acetate (MP4A) can

be used to assess AChE function. Using these

markers it was discovered that cortical AChE is

decreased in PD and related disorders such as Pervasive

Developmental Disorder (PDD) and diffuse Lewy body

disease (DLB). This reduction is more severe in PD

patients with dementia and is even more widespread

than in Alzheimer's disease. It is worth noting that the

cholinergic activity in PD is related to cognitive function

but less so with the severity of the motor symptoms.

PDD has similar decreases in neurotransmitter activity

to PD. However, PDD has lower levels of MP4A

binding. Although, this decline in cortical MP4A

and striatal FDOPA binding are still related suggesting a

role for both in the pathophysiology seen in these

patients.

Similar studies with [80I]-iodobenzovesamicol (IBVM)

allow observation of the VAChT system showing

cortical reductions predominating in the parietal and
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Imaging of Specific Neurotransmitters in PD

Cognition

occipital cortices of nondemented PD patients. Studies

of nAChR also show consistent subcortical reductions

in binding in PD patients. However, in contrast to the

nicotinic receptors, studies directed at mAChR have

actually shown increased frontal and occipital receptor

activity in patients with PD and PDD. Overall it seems

clear that cholinergic dysfunction is a prominent feature

of cognitive impairment seen in PD.

faster kinetics allowing adequate image acquisition as

early as three hours following its injection. Ioflupane

along with TRODAT are the only currently

commercially available tracers, with TRODAT being a

cheaper alternative. TRODAT has the advantage of

coming in kit form (easy application for daily clinical

use) however it also has the disadvantage of easy

washout from the CNS.

The contrast identifies the dopamine transporter which

exists as a protein complex in presynaptic

dopaminergic terminals. Therefore, the tagging

intensity is proportional to the density of healthy

dopaminergic neurons in that area. The distribution and

density of these neurons can be determined with the

DaT scan and experienced readers can identify PD and

Parkinsonian disorders on this basis. Studies using this

technique were even able to differentiate between cases

of PD and vascular Parkinsonism.

Through the review, we were able to summarize

information that functional radiologic studies can

provide into the understanding of molecular changes in

the Parkinson's disease. Data obtained from Functional

MRI, FDG PET Brain scans, and DAT (Dopamine

activity tracer) scans enables us to better localize the

disease activity predominantly to the Caudate nucleus

of the brain. We get better information about the PDRP

and PDCP. The PDRP (parkinsonism disease related

(39)

(39)

(40)

(40, 41)

(41 - 43)

DAT (DOPAMINE TRANSPORTER) SCAN

Conclusion:

DaT scan is an imaging technology designed to help

determine the availability of dopamine in a patient's

brain. It achieves this by using small amount of tropane

based tracers with SPECT (tracers: I- CIT (Dopascan),

I-FP-CIT (ioflupane, DaTSCAN), I-altropane, I-IPT,

I-PE2I, and mTc - TRODAT - ) or PET (tracers:

C-CFT, F-CFT, F-FP-CIT, and C-PE2I). Of these

tracers, ioflupane shows clinical promise because of

80

80 80 80

80 56 10 11

18 18 11 (40)
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pattern) is characterized by increased pallido-thalamic

and pontine metabolic activity, and reduced activity in

premotor cortex, supplemental motor area, and

parietal association regions on FDG pet Brain studies.

PDCP (Parkinson disease cognitive pattern) is better

understood by applying a spatial covariance analysis to

the FDG PET data. It revealed a specific pattern, which

is characterized by hypometabolism in frontal and

parietal areas with hypermetabolism in the cerebellar

vermis and dentate nucleus. These functional studies

can also explain the molecular basis of the resting

symptoms of Parkinson's disease and motor dyskinesias

associated with levodopa therapy. A reduced

presynaptic FDOPA uptake is associated with increased

dyskinesia severity. DAT scans uses the contrast

Ioflupane (most commonly), which identifies the

dopamine transporter, which exists as a protein

complex in presynaptic dopaminergic terminals.

Therefore the tagging intensity is proportional to the

density of healthy dopaminergic neurons in that area.

The distribution and density of these neurons can be

determined with the DaT scan and experienced readers

can identify PD and Parkinsonian disorders on this

basis.
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